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WAVEVECTOR-FREQUENCY SPECTRA OF NONHOMOGENEOUS FIELDS 

INTRODUCTION 

The utility of the wavevector-frequency spectrum for description and 
interpretation of stationary and homogeneoxis fields has been amply demonstrated over 
the past decade. However, the fields associated with the flow-induced vibration of 
structures are generally nonhomogeneous. This nonhomogeneity can result from either 
the space-varjmig nature of practical structures or a nonhomogeneity of the turbulent 
flow field that excites the structure. 

This paper presents alternative forms of wavevector-frequency spectra for 
nonhomogeneoiis, but stationary, fields and assesses, in a preliminary fashion, the 
practical utility of these spectral forms. 

DEFINITIONS 

Slide 1 

p (x,t) 

X=[Xi, X2] 

SPACE-TIME CORRELATION OF THE PRESSURE FIELD (Qpp) 

Qpp(x, S, t, r) = E{p(x, t)p(x + ^, t + r)} 

STATIONARY FIELD (CORRELATION INDEPENDENT OF ABSOLUTE TIME, t) 

Qpp(x. $,t, 7) = Qpp(x, ^r) 

HOMOGENEOUS FIELD (CORRELATION INDEPENDENT OF ABSOLUTE SPATIAL POSITION, x) 

Qpp(x. ^t, r) = Qpp(^,t, r) 

HOMOGENEOUS AND STATIONARY FIELD (CORRELATION INDEPENDENT OF x AND t) 

Qpp(x, |,t, r)=Qpp(|, r) 
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The field illustrated at the top of slide 1 is the pressure at the surface of the 
plane defined by the x^ and X2 axes. Although we use a pressure field for purposes 
of illustration, the field could just as well be displacement, stress, or any other quantity 
of interest. 

The correlation of the pressure field over the plane of interest is defined as the 
average value, over many repetitions of the measurement, of the product of (1) the 
pressure at the vector location ^ and time t and (2) the pressure at the vector 
location 5 + 1 and the time t + T . The average over the ensemble of 
experiments is denoted by E. 

In general, the correlation is a function of (1) the absolute spatial position and 
time of one observation of the pressure and (2) the spatial separation vector and the 
time difference between observations. A stationary field is one in which the 
correlation and all other statistical moments are independent of the absolute time of 
observation, t, and depend only on the time difference, T, between observations. 
Similarly, a homogeneous field is one in which the correlation is independent of absolute 
spatial position, 5, and depends only on the spatial separation vector, 1, 
between observations. 

In this paper, all fields are assumed to be stationary. Therefore, the correlation 
of nonhomogeneous fields will have the functional form of the second expression shown 
in this slide, and the correlation of homogeneous fields will have the form of the 
expression shown at the bottom of the slide. 
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Slide 2 

DEFINITIONS OF WAVEVECTOR-FREQUENCY SPECTRA 

STATIONARY HOMOGENEOUS FIELD 
00 

— 00 

WAVEVECTOR k= [k,, ka); CIRCULAR FREQUENCY (j= 2irf 

STATIONARY NONHOMOGENEOUS FIELD 

SPACE-VARYING SPECTRUM (Kp) 
00 

Kp (X, k. 0,)=   ff Qpp (X, £, T) e-' i^-i+^r) d£dr 

— 00 

SPACE-AVERAGED SPECTRUM (<I>p) 

<i>p (k, cj; A) = -j- f Kp (X, k, to) dx 

A 
TWO-WAVEVECTOR SPECTRUM (-ZTp) 

00 

■^STp {^L. k.u)=    \   Kp (X, k, cj) e-'ii-idx 
— 00 

For the homogeneoias, stationary field, the wavevector-frequency spectrum is 
defined as the multiple Fourier transform of the space-time correlation on the spatial 
separation vector, 1, and the time difference, T, as shown at the top of 
slide 2. Here, $p is the wavevector-frequency spectrum and the superscript H 
designates the homogeneoias field. 

The wavevector, K, is the Fourier conjugate variable of the spatial 
separation vector, i, and the circular frequency, cu, is the conjugate variable 
of the time difference, T. 

By cirguments similar to those used by Bendat and Piersol in defining frequency 
spectra for nonstationary fields, three alternative forms for the wavevector-frequency 
spectrum can be defined for nonhomogeneoiis, stationary fields. 
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The space-varying wavevector-frequency spectrum, designated by Kp, is 
defined by the same multiple Fourier transformation of the correlation field used for 
the homogeneoiis spectrum. However, because the nonhomogeneous correlation field is 
a fionction of the absolute spatial vector, S, the space-varying spectrum also 
varies with 5. 

The space-averaged spectrum. $p, is simply the average value of the 
space-varying spectrum over some area. A, in absolute space. 

The two-wave vector-frequency spectrum, designated by "^Cp, introduces a 
second wavevector, H, by an additional spatial Fourier transformation of the 
correlation field. This second wavevector is the conjugate variable of the absolute 
spatial vector, ?. 
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Slide 3 

PROPERTIES OF WAVEVECTOR-FREQUENCY SPECTRA 

SPECTRAL 
TYPE SYMBOL MATHEMATICAL 

FORM 
SYMMETRY 

PROPERTIES 

HOMOGENEOUS ^Jlk.w) REAL <I>J(-k, -w) = <I>J(k, w) 

SPACE-VARYING Kp(x,k,aj) COMPLEX 
Kp (X,  -k,  -oj) =  Kp (x, k, oj) 

Kp (x ,  - k , w) =  Kp (x , k , w) 

SPACE-AVERAGED *p(k, w ; A) REAL 4>p(-k,  -cj; A) = <i>p(k,co; A) 

TWO-WAVEVECTOR Kp(/i, k, w) COMPLEX 
Kp{-ix,  -k,  -w) =  Kp (/£, k, w) 

Kp ( - /I,  - k , oj) =  Kp (^ , k , w) 

*   DENOTES COMPLEX CONJUGATE 

Slide 3 presents, in tabular form, some of the properties of the spectral forms. 
Here we see that the homogeneous and space-averaged spectral forms are real 
functions of wavevector and frequency, whereas the space-varying and two-wave vector 
forms are complex. Bendat and Piersol refer to such complex spectra that result from 
Fourier transformation of the correlation field as "generalized spectra." 

For the real fields associated with physical processes, all spectral forms possess 
conjugate symmetry in the wavevector-frequency domain. Therefore, in practice, 
measurement of any spectral form over positive frequencies is sufficient to define the 
spectrum over all frequencies. Symmetries of the correlation function provide 
additional symmetry properties for the varioios spectral forms. These additional 
symmetries ensure that the local frequency spectral density of the field is real. 
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Slide 4 

RELATION BETWEEN FREQUENCY SPECTRUM 
AND WAVEVECTOR-FREQUENCY SPECTRA 

DEFINITION OF LOCAL FREQUENCY SPECTRAL DENSITY 

*p(x, w) =   f Qpplx.o, 
— OO 

T)e-'"'"dT 

HOMOGENEOUS FORM 
OO 

— OO 

NONHOMOGENEOUS FORMS 

SPACE VARYING: 
OO 

*P *-■''' = (27)2   jKp(x.k,a;)dk 

SPACE-AVERAGED: 

-^ j <l>p (x , w) dx ~   " (27)2 J <I>p(k, oj; A) dk 

TWO-WAVEVECTOR: 

*P^-''^' = {2^)A\ "^P*^' ^.^)e'~°~d^dk 

The local frequency spectral density is the temporal Fourier transform of the 
correlation field at zero spatial separation, as shown at the top of slide 4. 

By this definition and the definitions of the varioios spectral forms, the 
relationships, shown here, between the local frequency spectral density and the various 
wavevector-frequency spectra were established. 

In all cases, the local frequency spectrum is related to an integral of the 
wavevector-frequency spectrum over the wavevector variable, K, the transform 
variable   associated   with   the   spatial   separation   vector,   i.    In   the   case   of   the 
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two-wave vector spectrum, the relationship also Involves a Fourier transformation on 
the wavevector, H, associated with the absolute spatial vector, 5. 

Note that the frequency spectrum of the homogeneous field is constant over all 
space and is thereby independent of the absolute spatial vector, S. 

Note also that only a spatial average of the local frequency spectrum can be 
recovered from the space-averaged wavevector spectrum. 

Recall that our objective is to determine the utility of the varioiis 
wavevector-frequency spectral forms for description and interpretation of 
nonhomogeneous fields. 

With regard to description, the space-varying and two-wavevector forms of 
wavevector-frequency spectra are Fourier transforms of the space-time correlation 
field and are therefore informationally equivalent to the correlation field. The 
space-averaged form is not informationally equivalent to the correlation field because 
the spatial averaging obscures the nonhomogeneous characteristics of the field. 
Therefore, we can eliminate the space-averaged form from further consideration. 

It is now desirable to determine if the remaining two spectral forms offer 
advantages for analyzing or interpreting nonhomogeneoiis fields. In linear 
hydroacoustic and structural-acoiistic systems, nonhomogeneous output fields result 
from only two sources: (1) a nonhomogeneous input (or excitation) to the system or 
(2) space-varying properties of the system. The utility of the remaining two spectral 
forms was evalviated on the basis of the mathematical simplicity afforded by these 
forms in the analysis of linear space-time systems. 
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LINEAR SPACE-TIME SYSTEMS 

Slide 5 

LINEAR SPACE-TIME SYSTEMS 

f(x,r) 
(INPUT) 

g (x, t; ^ r) -    p (x , t) 
(OUTPUT) 

IMPULSE RESPONSE:     g (x, t; { , r) IS THE OUTPUT OF THE SYSTEM AT x AND t DUE TO 

AN IMPULSIVE EXCITATION (INPUT) APPLIED AT x - ^ AND t - r. 

INPUT-OUTPUT RELATIONSHIPS 

GENERAL 
OO 

P(x,t)=   If g(x, t; |, T)f(x -|^, t-r)d|d7 

— OO 

SPACE-VARYING.TIME-INVARIANT SYSTEM (g INDEPENDENT OF t) 
OO 

P(x,t)=   f (g^(x,|, T)f(x -|, t-r)d|dr 

— OO 

SPACE- ANDTIME-INVARIANT SYSTEM (g INDEPENDENT OF x  AND t) 

P( ^-JS gi (^ , r) f (X - $ , t - r) d$ dr 

The concept of linear space-time systems is illustrated at the top of slide 5. 
Here, the system, characterized by the impulse response g, is excited by a space-time 
field, f, resiolting in an output field designated by p. As an example in flow-induced 
vibrations, the system coiild be a plate, the input (or excitation) could be the pressure 
field of the t\irbulent bo\andary layer, and the output could be the restilting 
displacement field of the plate. 

The impulse response of the system is defined as the output of the system at 
location S and time t due to an impulsive input applied at 5 - i 
ajid t - T. In general, the impulse response is a function of the four variables 
5,  ^,1. and T. 

By the principle of superposition for linear systems, the output field of the system 
can be expressed in terms of the input field and the impulse response according to the 
first expression in this slide. 
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A system with constant properties over time is called a time-invariant system. 
The impiiLse response of a time-invariant system is independent of the absolute time of 
observation, t, and depends only on the time difference, T, between excitation and 
observation.  For this study, we restricted our attention to time-invariant systems. 

The expression shown in the middle of this slide defines the input-output relation 
for a time-invarijint, but space-varying, system. The subscript "v" on the impulse 
response denotes the space-varjnng nature of the system. Note that the impulse 
response, in this case, is a function of both the absolute spatial position of observation, 
5, and the separation vector, I, between the points of excitation and 
observation. 

A space-invariant system is one in which the system properties are constant over 
all space. A uniform, infinite plate is one example of a space-invariant system. In a 
space-invariant system, the impulse response is independent of the absolute position of 
observation, S, and depends only on the spatial separation, S, between 
excitation and observation. 

The input-output relation for a space- and time-invariant system is shown at the 
bottom of this slide. Here, the subscript "i" is used to identify the space-invariant 
impulse response. 

By use of these input-output relationships and the various descriptors of random 
fields presented previously, the response of space-varying and space-invariant systems 
to homogeneous and nonhomogeneoiis inputs can be expressed in several alternative 
forms. The next few slides compare the mathematical forms of these input-output 
relations for specific systems and inputs. 
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SPACE-INVARIANT SYSTEM, HOMOGENEOUS INPUT 

Slide 6 

INPUT-OUTPUT RELATIONS FOR 
SPACE-AND TIME-INVARIANT SYSTEM, HOMOGENEOUS INPUT 

CORRELATION (SPACE-TIME): 
oo 

Qpp(l, T) =   I I I I Q„{|^ +f^ -17, T + e,- e2)gi(€_, e^lgji?), ejlde^deidr/deg 

— 00 

CROSS-SPECTRAL DENSITY (SPACE-FREQUENCY): 
00 

Spp($.w)=   f f S„(|-i-e_-77,a))ri{e_, -a))ri(7j, w) d^dTj 

WHERE 

ri( 
oe 

g,($.r)e-'"^dr 

WAVEVECTOR-FREQUENCY SPECTRUM: (WAVEVECTOR-FREQUENCY) 

<l>^(k,a>) = <I>[^(k,a,)|G|(k,a)|2 

WHERE 
00 

G,(k,o;) =   Jf gi(^T)e-''!l-i+'^^>d£dT 

Slide 6 presents alternative input-output relationships for a space-invariant 
system excited by a homogeneous field. (Recall that all systems treated here are 
assumed to be time-invaricint.) 

In this case, the output field is also homogeneous and can be alternatively 
described in terms of the correlation, the cross-spectral density, or the homogeneous 
form of the wavevector-frequency spectrum. The cross-spectral density is the 
temporal Foiirier transform of the correlation. 

Note that the correlation of the output field is related to the correlation of the 
input and the impulse response of the system by a quadruple integral. The 
cross-spectral density of the output is related to that of the input and the 
space-frequency response of the system by a double integral. The space-frequency 
response, denoted by r^, is the temporal transform of the impulse response and 
defines the response of the system to a point excitation that varies sinusoidally in time 
\An.th frequency w. 

10 
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The wavevector-frequency spectrum of the output is related to the 
wave vector-frequency spectrum of the input and the wavevector-frequency response of 
the system by the simple product form shown at the bottom of the slide. The 
wavevector-frequency response, Gj, defines the response of the system to excitation 
by a plane wave characterized by the wavevector ^ and the frequency to. 

Clearly, for a space-invariant system excited by a homogeneous field, the 
wavevector-frequency representation of the input and output fields resiolts in the 
simplest mathematical description of the system. Given any two of the 
wavevector-frequency fields in this expression, the third cjin be determined by simple 
algebra. 

11 
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SPACE-INVARIANT SYSTEM, NONHOMOGENEOUS INPUT 

Slide 7 

INPUT-OUTPUT RELATIONS FOR 
SPACE-AND TIME-INVARIANT SYSTEM, NONHOMOGENEOUS INPUT 

CORRELATION (SPACE-TIME): 

Qpp(x, I, r) =   \ j \\ Qff(x -e^, $ +«-^, T+e,-02)gi(f^, •>i)gi(^, Ojjd^do, drjdos 
— OO 

CROSS-SPECTRAL DENSITY (SPACE-FREQUENCY): 
OO 

Spp ( X , f, oj) =   I I S„ ( X - €_, $ -(- 6^ - Tj, w) r, ( e^, - o)) Ti ( T; , u)) df dr; 
— OO 

SPACE-VARYING WAVEVECTOR-FREQUENCY SPECTRUM: (SPACE-WAVEVECTOR- 
FREQUENCY) 

OO 

'^p(!i'!l''^> = (^   ( ( K,(z,k,aj)G|(k. w)G|(/t -k, -co)e''r*!^-!' d^dz 
— OO 

TWO-WAVEVECTOR-FREQUENCY SPECTRUM (WAVEVECTOR-FREQUENCY) 

Kp(/t,k,aj) = K,(^,k,aj)G|(k,w)Gi(/i-k,-u)) 

Slide 7 compares alternative input-output relationships for a space-invariant 
system excited by a nonhomogeneous field. In this case, the output field is also 
nonhomogeneoios, and it is evident, by comparison of the four descriptions offered, that 
the two-wave vector-frequency spectrum affords the simplest relation btetween the 
input and output fields. 

By this simple algebraic form, the two-wavevector-frequency spectrum of either 
the input or output field is easily predicted, given the two-wavevector spectrum of one 
field and the wavevector-frequency response of the system. If the two-wavevector 
spectra of both input and output fields are known, only the particiilar product of the 
wavevector-frequency responses of the system shown in the last expression can be 
determined. However, from this product, the wavevector-frequency response can be 
specified to within a phase factor. 

0 

12 
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SPACE-VARYING SYSTEM. HOMOGENEOUS INPUT 

Slide 8 

INPUT-OUTPUT RELATIONS FOR 
SPACE-VARYING SYSTEM, HOMOGENEOUS INPUT 

CORRELATION (SPACE-TIME): 
oo 

Qpp(x, f , T) =   \ I j I Qft($ +e -j, T + e,-e2)gv(x, e^. ei)g^(x -1-^, 7j, eglde^dei cJTjdej 
— OO 

CROSS-SPECTRAL DENSITY (SPACE-FREQUENCY): 
OO 

Spp(x, 1^, w) =   M S„($ +1-V, aj)r^(x, 6^, -aj)r^(x -1-^, 7j, w) de^dTj 
— OO 

WHERE r^ IS THE TEMPORAL FOURIER TRANSFORM OF g^. 

SPACE-VARYING WAVEVECTOR-FREQUENCY SPECTRUM: 
OO 

^(^■!l''^) = ^  ((*r(x,a;)^,(x, -7, -co)^,(x +7j,7,u;)e'<2-1>-'' dr,d7 
— OO 

WHERE^^(x, k, w) IS THE DOUBLE FOURIER TRANSFORM OF g^{x, ^, T) ON ^   AND r. 

TWO-WAVEVECTOR-FREQUENCY SPECTRUM: 
OO 

Kp (/I, k , w ) = ^^  l<I>,"(7,w)Gy(/i-(-7-k, -7, -Gi)G^(k -y, y, u))dy 
— 00 

WHERE G^ IS THE TRIPLE FOURIER TRANSFORM OF g^ ( x , ^ , T ). 

Slide 8 presents the varioiis input- output relationships for a space-varying system 
excited by a homogeneous field. Here, the various descriptors of the nonhomogeneous 
output field are related to corresponding descriptors of the homogeneous input field and 
the system response. The mathematically simplest form of input-output relation is that 
shown at the bottom of the slide, which relates the two-wavevector-frequency 
spectrum of the nonhomogeneous output to the wavevector-frequency spectrum of the 
homogeneous input field and the two-wavevector-frequency response of the system by 
a single integral. 

The two-wavevector-frequency response of the system, G^ (ji, k, w), is the 
wavevector-frequency transform of the output field at the ~ wavevector 
H + ^ resulting from excitation of the system by a plane wave 
characterized by the wavevector ^ and the frequency cj. Thiis, the 
two-wavevector-frequency response defines the degree to which the input wavevector 
is scattered into other wavevectors by the space-varying properties of the structure. 

13 
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Note that if the wavevector-frequency spectrum of the homogeneous input field 
and the two-wavevector-frequency response of the structiore are specified, the 
two-wavevector-frequency spectrum of the output field can. in principle, be obtained 
by the integral at the bottom of this slide. 

If the two-wavevector-frequency spectrum of the output and the 
two-wavevector-frequency response of the system are known, the determination of the 
wavevector spectrum of the homogeneous input requires solution of am integral eqiiation. 

Note, finally, that to determine the product of two-wavevector-frequency 
responses in the laist expression on this slide, the system must be excited by a 
homogeneous field comprised of a single wavevector and a single frequency. By 
knowledge of this product, the corresponding two-wavevector-frequency response of 
the system can be determined to within a phzise factor. 

14 
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SPACE-VARYING SYSTEM. NONHOMOGENEOUS INPUT 

Slide 9 

INPUT-OUTPUT RELATIONS FOR 
SPACE-VARYING SYSTEM,  NONHOMOGENEOUS INPUT 

CORRELATION (SPACE-TIME): 
OO 

Qpp(x,$,T)=   \l j I Q„(x - e^, ^+e^-;7, T-(-ei-e2)gv(x, e^, ei) 

gv(x +1, rj, 0 2)de_de, cJTjdej 

CROSS-SPECTRAL DENSITY (SPACE-FREQUENCY): 
OO 

— OO 

SPACE-VARYING WAVEVECTOR-FREQUENCY SPECTRUM: 

OO 

Kp^i-H-'^) = (iJ^   JJJJKf(z.7''^''*'v(!i./i. -7)A(x +1.7.'^) 

e-'<!l-l'-« e'!^"<!-£>dzd|d7dM 

TWO-WAVEVECTOR-FREQUENCY SPECTRUM: 
OO 

Kp(|i£, k, w) = -—j   \ \ K, (a,7,aj)G(7-k-i-/i-a,a~7, -a))G(k-7,7,a;)dad7 

Slide 9 defines alternative input-output relations for a space-varying system 
excited by a nonhomogeneous field. In this situation, note that both the cross-spectral 
density and two-wavevector spectrum descriptions of the system output are related to 
the corresponding description of the input by double integrations, whereas the other 
descriptions are in the form of quadruple integrals. Further, note that the integrands of 
the cross-spectral and two-wavevector descriptions are of comparable mathematical 
complexity. 

In the cross-spectral representation, the system is characterized by the 
space-varying frequency response, denoted by r^. The space-varying frequency 
response is the temporal Fourier transform of the space-varying impulse response. In 
the two-wavevector representation, the system is characterized by the 
two-wavevector-frequency resppnse described previously. 

Given the knowledge of the appropriate description of the input field and the 
system response, the cross-spectral density or the two-wavevector-frequency spectrum 

15 
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of  the   output  field  can  be   obtained  by  performing  the   reqxaired  double   vector 
integrations. 

However, if only the description of the output field and system response are 
known, one is faced with solving a double vector integral equation for the cross 
spectrum or two-wavevector spectrum of the input field. The kernel of this integral 
equation is the product of the appropriate system responses. 

The kernel of an integral eqiiation cannot be determined by knowledge of any 
single input and output field. Therefore, knowledge of the cross spectra or 
two-wavevector spectra of both the input and output fields from any single experiment 
is not sufficient to determine the associated product of system responses. However, by 
knowledge of the input and output fields from a carefully designed sequence of 
experiments, a sampling of the desired product of system responses can be determined 
in both space variables (x and ^) or both wavevector variables (y and k) and In 
frequency. From this sampling of the kernel, a sampling of the desired "system response 
can be determined to within an unknown phase factor. 
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SUMMARY AND CONCLUSIONS 
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SUMMARY 

THREE ALTERNATIVE FORMS OF WAVEVECTOR-FREQUENCY 
SPECTRA FOR NONHOMOGENEOUS,  STATIONARY  FIELDS 
HAVE BEEN DEFINED. THESE WERE 

• SPACE-VARYING SPECTRUM 

• SPACE-AVERAGED SPECTRUM 

• TWO-WAVEVECTOR SPECTRUM. 

EVALUATION OF THESE FORMS FOR DESCRIPTION AND 
INTERPRETATION OF NONHOMOGENEOUS  FIELDS REVEALED 

• ONLY THE SPACE-VARYING AND TWO-WAVEVECTOR FORMS ARE 
INFORMATIONALLY EQUIVALENT TO THE CORRELATION FIELD. 

• THE TWO-WAVEVECTOR FORM PROVIDES THE MATHEMATICALLY 
SIMPLEST INPUTOUTPUT RELATIONS FOR LINEAR SYSTEMS. 

In summary, we have defined three alternative forms of wavevector-frequency 
spectra for nonhomogeneous, but stationary, fields: a space-varying form, a 
space-averaged form, and a two-wavevector form. 

The utility of these spectral forms for the description and interpretation of 
nonhomogeneous fields was evaluated by comparison with other descriptors of such 
fields. 

With regard to description, it was found that only the space-varying and 
two-wavevector forms were informationally equivalent to the correlation field. 

The interpretive utility of the various spectral forms was assessed on the basis of 
the mathematical simplicity of the input-output relationships of linear systems giving 
rise to nonhomogeneous fields. This comparison showed that the two-wavevector form 
consistently provided the simplest input-output relationships. 
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CONCLUSIONS 

Slide 11 

CONCLUSIONS 

• IN THEORY, THE TWO-WAVEVECTOR-FREQUENCY SPECTRUM 
OFFERS ADVANTAGES OVER OTHER DESCRIPTORS FOR THE 
ANALYSIS AND INTERPRETATION OF NONHOMOGENEOUS, 
STATIONARY FIELDS. 

• PRACTICAL PROBLEMS INCLUDE 

(1) DEVELOPMENT OF TECHNIQUES TO MEASURE THE TWO- 
WAVEVECTOR-FREQUENCY SPECTRUM. 

(2) DEVELOPMENT OF TECHNIQUES TO MEASURE THE TWO- 
WAVEVECTOR-FREQUENCY RESPONSE OF SPACE-VARYING 
SYSTEMS. 

(3) INVERSION OF INTEGRAL EQUATIONS IN INPUT-OUTPUT 
RELATIONSHIPS. 

In conclusion, we have demonstrated that, in theory, the two- 
wavevector-frequency spectrum offers advantages over other descriptors for the 
analysis and interpretation of nonhomogeneous fields. 

However, to determine whether these advantages can be realized in practice, 
several problems must be addressed.  These problems include 

(1) Development of techniques to measure the two-wavevector-frequency 
spectrum, 

(2) Development of techniques to measure the two-wavevector-frequency 
response of practical space-varying systems, and 

(3) Inversion of integral equations in input-output relationships. 
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